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INTRODUCTION 

The monopoles 
[1-3]

 and dyons 
[4-6]

 became 

intrinsic part of all current grand unified 
theories

[7]
 (GUT’s) and super- symmetrical 

models
[8-13]

. Perhaps the most important aspect 

of monopoles and dyons in physics is their role 
in the mechanism of quark confinement

[14-19]
 

along the lines of dual Meissner effects
[20-24]

 

leading to dual superconductivity as discussed 
in our recent papers 

[25-36]
  by employing dual 

gauge potential where magnetic degree of 

freedom manifestly appears in the partition 

function. Embedded monopoles are gauge-
invariant composite objects made of quark and 

gluon fields. These monopoles constitute a new 

class of defects of quantum chromo-dynamics 
(QCD) and proliferate in the quark-gluon 

plasma phase.  This proliferation is associated 

with the well defined boundary 
[37]

 known as 
Kretesz-line, which separates the hadronic phase 

(i.e. the confinement phase) and the quark- 

gluon phase (i.e. de confinement phase) of QCD 

with realistic quark masses and vanishing 
chemical potential. At larger chemical potential, 

the phase transition re-emerges at a critical point 

and then continues as the first-order phase 
transition.  At even higher temperature, more 

exotic phases such as color superconductivity 
and the color-flavor locking appear 

[38]
. 

Embedded monopoles in QCD are analogues of 

the embedded Nambu-monopoles 
[39,40]

 in 

standard Electro-Weak model.
[40]

.  There should 
be an indirect relation between embedded 

monopoles and confining properties including 

superconductivity since the confinement 
phenomenon and the chiral symmetry are 

intimately related in QCD and the embedded 

monopoles are considered as agents of chiral 
symmetry restoration 

[41]
. 

Extending the restricted chromo dynamics 

(RCD)
 [31,32] 

in SU(2) and SU(3) gauge theories 

in the present paper by including quarks and 
gluons ,the study of dyonic condensation, quark 

confinement and superconductivity (dual 

superconductivity as well as color 
superconductivity) has been undertaken in 

extended RCD. In this  paper the study of  

superconductivity due to embedded monopoles 
[37,41]

 in SU(2) and SU(3) gauge theories has also 

been carried out by exploring the role of quark 

monopoles (i.e. embedded monopoles) in 

restoration of chiral symmetry and the related 
confining properties. The bilinear functions of 

fermion fields have been constructed in SU (2) 

theory as scalar and axial vector from the point 
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of view of space-time transformations. The 

corresponding Georgi-Glassow multiples have 
been used to construct gauge-invariant t’ Hooft 

tensors in color space and the currents of quark-

monopoles of three types have been shown to 

possess 𝛿 –singularities at corresponding world-

lines. It has been shown that these quark-

monopoles (embedded monopoles) are tightly 

related to the chiral symmetry restoration and 
the resulting superconductivity in QCD. 

The bilinear functions of fermion field have also 

been constructed as octet vectors (scalar octet 
and axial octet) and the invariant octet vector 

has been shown transforming in the adjoint 

representation of the underlying symmetry 
group.  Introducing three additional fields, the 

components of symmetric tensor field of rank-2 

have been constituted and their transformations 

under axial rotations have been derived. These 
six octet fields have been used to describe the 

embedded monopoles in the SU(3) gauge 

theory.  The magnetic charge of SU(3) 
embedded monopole has been constructed in 

terms of dual simple roots and its quantization 

condition in SU(3) theory has been derived. 

These SU(3) embedded monopoles have been 
classified into two categories according to 

maximal and minimal symmetry breakings 

respectively and it has been shown that in the 
case of QCD we can realize both these patterns 

of symmetry breaking simultaneously.  It has 

also been shown that due to the role of 
embedded monopoles in chiral symmetry 

restoration and the fact that the chiral symmetry 

and confinement phenomenon are intimately 

related in QCD, the embedded monopoles play 
an important role in confining properties 

including superconductivity (rather color 

superconductivity). 

SUPERCONDUCTIVITY DUE TO 

CONDENSATION  OF  EMBEDDED 

MONOPOLES  IN  SU (2) THEORY 

Monopole condensation mechanism of 

confinement, together with dual 
superconductivity, implies that long range 

physics is dominated by Abelian degrees of 

freedom and the method of Abelian projection 
(i.e. Abelianization) is one of the popular 

approaches to the problem of confinement, and 

hence superconductivity, in non-Abelian gauge 

theories. In SU(2) gauge theory of QCD this 
Abeliazation may be achieved by the constraint 

given by 
[25-27]

. 

                     (2.1)  

where Dµ is covariant derivative for the gauge 

group,µ = 0,1,2,3,𝑉𝜇   is the generalized gauge 

potential and g is magnetic charge on monopole. 

The vector sign and cross product in this 
equation are taken in internal group space and 

𝑚 characterizes the additional Killing symmetry 

(magnetic symmetry) which commutes with the 

gauge symmetry itself and is normalized to 

unity i.e. 1ˆ 2 m  

This magnetic symmetry imposes a strong 
constraint on the connection and hence may be 

regarded as symmetry of gauge potential. This 

gauge symmetry restricts not only the metric but 

also the gauge potential. Such a restricted theory 
(RCD) may be extracted from full QCD on 

restricting the dynamical degrees of freedom of 

theory by imposing magnetic symmetry which 
ultimately forces the generalized non-Abelian 

gauge potential 𝑉𝜇 ( 𝐴𝜇 , 𝐵𝜇 ) of monopole to 

satisfy a strong constraint given by eqn.(2.1) 
which gives the following form of the 

generalized restricted potentials, 

    with                 (2.2)

mBA ˆ*

 


 

where𝐴𝜇  and 𝐵𝜇  are the electric and magnetic 

constituents of gauge potential. These equations 

give as unrestricted Abelian components of the 

restricted potentials. 

*ˆ.ˆ
 BAm 

 and            (2.3) 

If 𝐴 𝜇 in the original QCD then unrestricted 

potential is only 𝐵∗
𝜇  and the restricted part of 

the potential is given as  

mm
g

B ˆ
1

 


                                 (2.4) 

W



     

where W is the potential of topological 
monopoles in magnetic symmetry which is 

entirely fixed by m̂  up to Abelian gauge 

degrees of freedom. The unrestricted part of the 
gauge potential describes the monopole flux of 

color isocharges. The unrestricted part 𝐵∗
𝜇  is 

the dual potential associated with charged 

gluons 𝑊𝜇
± and leads to condensation of 

monopoles and the resultant state of chromo-

magnetic superconductivity as shown in our 

earlier papers
[25-30]

. 
ˆ ˆ 0D m m igV m      



* 1
ˆ ˆ ˆB A m m m

g
    


*ˆˆ .m B A 
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In the presence of a complex scalar field  
(Higg’s field) and in the absence of quarks or 

any colored object, the RCD Lagrangian in 
magnetic gauge may be written as  

)*(||
2

1
4

1 2 


 VDHHL 
      (2.5) 

where 

,                          (2.6) 

D = ( + ig W) ,                                   (2.7) 

and  ,, WWH 
                             (2.8)  

In the presence of quarks (and gluons), the RCD 

Lagrangian (2.5) may be generalized to the 

following form; 

)(
2

1
)(

4

1 2

 





 VDmDiHHL a

a

a

a

a

a

R

,                                                              (2.9)  

where a = 1, 2, 3,  represents quark field with 

mass m, and 𝐻   𝜇𝜈  has been constructed as        

3


HH 

 in the magnetic gauge by 

aligning 𝑚  along a space- time independent 

direction (say 𝜉 3in isospin space) on imposing a 

gauge transformation U such that  

                                          (2.10)  

with𝐻𝜇𝜈  defined by eqn. (2.8) where Wµ may be 

identified as the potential of topological dyons 
in magnetic symmetry which is entirely fixed by 

m̂  up to Abelian gauge degrees of freedom. 
Thus in the magnetic gauge, the topological 

properties of m̂  can be brought down to the 
dynamical variable Wµ by removing all non-

essential gauge degrees of freedom and hence 

the topological structure of the theory may be 
brought into dynamics explicitly. It assures a 

non-trivial dual structure of the theory of 

monopoles in magnetic gauge in which these 
objects appear as  point-like Abelian ones and 

the gauge fields are expressible in terms of 

purely time-like non-singular physical potential 

Wµ.  Lagrangian (2.9) can be used to represent 
the interactions between quarks and monopoles 

in the theory. It can be viewed as the effective 

Lagrangian used to describe the dual dynamics 
of RCD at the phenomenological level just as 

the Ginsburg – Landau Lagrangian is used in the 

theory of superconductivity. With this Lagrangian 

in hand, we have two phases in our theory. The 

first one is the un-confinement phase (quark-
gluon plasma phase), where magnetic symmetry 

is preserved and the second one is the 

confinement phase ( hadronic phase), where 
magnetic symmetry is broken dynamically. 

These two phases are separated by the well- 

defined boundary
[37],

 known as Kreteszline, with 

which there is associated the proliferation of 
embedded monopoles which are gauge-invariant 

composite objects made of quark and gluon 

fields. Hence these embedded monopoles are 
also called quark-monopoles

[37]
. 

 In order to explore the role of quark monopoles 

(i.e., embedded monopoles) in restoration of 
chiral symmetry and the related confining 

properties and superconductivity, in SU(2) 

theory, let us start with the quark field (i.e. 

fermion field) , introduced through eqn. (2.9), 
which transforms in the fundamental 
representation of gauge group SU(2) in Yang-

Mills theory. Then the bilinear functions of this 

fermion field may be defined as  

                                       (2.11) 

                            (2.12)  

where
a̂  are the Pauli matrices and Ŝ and Â  

(the real valued composite fields) are scalar and 

axial (i.e., pseudo scalar) fields from the point of 

view of space-time transformations. Both these 
fields transform as adjoint three- component 

quantities with respect to the action of the gauge 

group.  

Let (x) used in equation (2.11) and (2.12) be c-

valued function as an eigen mode of massless 

Dirac operator D̂ ,  

)()(ˆ xxD   
                              (2.13) 

where 

                              (2.14) 

with 𝐵𝜇
𝑎 (x) as the gauge fields. Let us consider 

the axial transformations UA(1) defined by the 

global Abelian parameter  as  

and (2.15)     

Under these transformations UA(1), the color 

vector  and 
aÂ  given by equation (2.11) and 

(2.12), transform as 

2 2 2( * ) (| | )V v     

3

0

ˆˆ 0

1

U

m 

 
 

   
 
 

ˆ ( ) ( )a aS x x  


5
ˆ ( )( ) ( )a aA x i x   



1ˆ ( )
2

a aD i B     

5/ i r
e
    5/ i

e
   

 

ˆ aS
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      (2.16) 

Let us construct the following three unit color 

vectors in terms of adjoint fields 
aŜ and 

aÂ ; 

,   (2.17) 

where the symbol denotes vector in color 

space and || S


and || A


are norms of color 

vectors SS ˆ


  and  AA ˆ


 

2/1

2/1

ˆ,ˆ||

,ˆ,ˆ||

AAA

SSS









 

The last relation in equation (2.17) gives the 
normalized vector product (in color space) of 

the scalar and axial color vectors Ŝ and Â  

respectively.  Using equations (2.17) and (2.16), 

it may readily be shown that the unit vector  is 

invariant under the axial transformations (2.15) 

and (2.16). Unit vectors of equation (2.17) may 

be interpreted as the directions of the composite 

adjoint Higgs field.  Then we get following 
three Georgi-Glashow multiplets in SU(2) gauge 

theory with Higgs fields; 

                      (2.18) 

These multiplets can be used to construct the 
gauge invariant, t Hooft tensors

[2]
 in the 

following form in color space: 

      (2.19) 

where 

               (2.20)  

is the field strength of the gauge field B


 with 

magnetic charge g and  

c

abcabab BgD   )(
               (2.21) 

is the adjoint covariant derivative. t’ Hooft 
tensors of equation (2.19) are the gauge 

invariant field strength tensors for the diagonal 

components 

);ˆ,(

);ˆ,(

);ˆ,(

I

I

A

A

s

s

nBB

nBB

nBB



















                                         (2.22) 

of the gauge field with respect to the color 

directions. The current of the quark monopole of 

S
th
 type is then given by  

)]([
)(

2

)4(

)(

,





 



s

s

s

C

C

C

sds

Xx
X

d

k

g
k










       (2.23) 

where 
sd )(


, dual of  

s


, is given by  

ssd

 
2

1)(

                              (2.24)  

and
sC  is the corresponding world-line while 

monopole world-line is parameterized by the 

vector and the parameter . This 

current, given by equation (2.23), has a -like 
singularity at the world-line C

s
. Similarly, the 

currents of quark monopoles of A
th

 and I
th
 type 

have -like singularities at the world lines C
A
 

and C
I
 respectively.  

The quark monopoles defined by equation 
(2.23) are quantized and the corresponding 

monopole charge is conserved. In other words 

the world lines C
S
, C

A
 and C

I
 are closed. . In the 

corresponding unitary gauges      

              (2.25)  

the quark monopoles correspond to monopoles 

embedded into the diagonal components given 
by equations (2.22). 

SUPERCONDUCTIVITY ASSOCIATED WITH  

EMBEDDED  MONOPOLES  IN  SU(3) GAUGE 

THEORY 

The magnetic structure of restricted chromo 
dynamics in SU(3) gauge theory may be 

described by two internal Killing vectors which 

commute with each other and also with the 
gauge symmetry itself and are normalized to 

unity. These Killing vectors are a   3- like octet 

m̂  and its symmetric product m̂  which is 8 -

like. Let us restrict the dynamical degrees of 
freedom of the theory (while keeping the full 

gauge degrees of freedom intact) by imposing 

the extra magnetic symmetry which restricts the 

/

/

ˆ ˆ ˆ ˆcos 2 sin 2

ˆ ˆ ˆ ˆsin 2 cos 2

a a a a

a a a a

S S S A

A A S A

 

 

  

   

ˆ ˆ ˆ; ;
| | | | | |

s A I

S A S A
n n n

S A S A


  



   

   

ˆ
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ˆ ˆ ˆ( , );( , );( , )a a a a a a

s A In B n B n B  

1
ˆ ˆ ˆ[ ( ) ( )];

1
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1
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s
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I II
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   

   
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      

    
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generalized non-Abelian gauge potential 
V



to 
satisfy the constraints given by  

0ˆˆˆ  mVigmmD 



 and          (3.1)                                       

0ˆˆˆ  mVigmmD 



, 

where D is covariant derivative for the gauge 
group and g is magnetic charge of monopoles. 

In these magnetic structures the eqn.(2.4) for 
restricted gauge potential may be generalized in 

to the following form for monopoles in 

restricted SU(3) gauge theory;

 WWmm
g

mm
g

B  )ˆˆ(
1

)ˆˆ(
1

   (3.2)   

In the magnetic gauge  m̂  and mˆ become the 

space-time independent 3̂ and 8̂  respectively, 

where 

                              (3.3) 

Then the gauge potential of equation (3.2) may 

be written as 

83
ˆˆ   WWB 



                                (3.4) 

where W and W 
may be identified as the 

potentials of topological monopoles in magnetic 

symmetry of SU(3) gauge theory. These are 

entirely fixed by m̂  and mˆ , respectively, up to 

Abelian gauge degrees of freedom. The 

generalized field strength can, then, be 

constructed as  

83
ˆˆ   HHG 



                            (3.5) 

Where 𝐻𝜇𝜈  is given by eqn.(2.8) and 𝐻′𝜇𝜈  is 

defined as 

 ,, WWH 
                                   (3.6) 

Then eqn. (2.9) may be generalized to the following form for the effective Lagrangian for SU(3) RCD 

in the presence of quarks; 

                                                          (3.7) 

Where,  

;)(   igWD 
 

;')'(''   igWD 
 





 HHHHL free

R  [
4

1
]





  HHHH

                                                        (3.8) 

is the free field Lagrangian and  

)(]
33

)[(

]
323

2
)[(]

323
)[(

yybbrryy

brr

R

t

mW
g

W
g

i

W
g

W
g

iW
g

W
g

iL
b


















                     (3.9) 

where ybr  ,,
, representing the quark 

triplet,  constitute quark field   in SU(3) 

theory. Equation (3.9) is gauge extension of the 

Lagrangian given by (2.9) in SU(2) gauge 

theory. It leads to the dynamic condensation, 

color confinement and the resulting dual 

superconductivity in SU(3) theory in the 

presence of  two scalar modes and two vector 

modes as the consequence of the presence of 

two-magnetic vectors  m̂ and 
'm̂ . Here also the 

3 8

0 0

0 0

1 0

0 0ˆ ˆ
0 0

0 0

0 0

0 1

and 

   
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   
   
    
   
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   
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2 / / 2 /* /1 1
| | | | ( * , )
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theory has two phases i.e. the un-confinement 

phase (quark-gluon plasma phase), where 

magnetic symmetry is preserved and the 

confinement phase (hadronic phase), where 

magnetic symmetry is broken dynamically. 

These two phases are separated by the well 

defined boundary 
[37],

 known as Kreteszline, 

with which there is associated, the proliferation 

of embedded monopoles which are gauge-

invariant composite objects made of quark and 

gluon fields. 

In SU(3) gauge theory the bilinear functions of 

equations (2.11) and (2.12) are generalized into 

the following composite octet vectors; 

                              (3.10) 

and 

                            (3.11) 

where
aŜ  is the scalar octet, 

aÂ  is the axial 

octet and the gauge group is generated by eight 

traceless matrices 

8..........2,1,2/  aT aa                        (3.12) 

normalized as 

,  

where
a  are Gellmann matrices and tr denotes 

the trace. In SU(3) gauge group there are totally 

asymmetric structure constants f
abc

 and totally 

symmetric constant d
abc

  defined via relations 

[Ta, Tb] = T
a
T

b
 - T

b
 T

a
 = if

abc
 Tc                 (3.13) 

and   {T
a
, T

b
} = T

a
 T

b
 + T

b
T

a
 =

1

3


ab
 + d

abc
 Tc 

In SU(3) gauge group the following invariant 

field may also be built up from the octets given 

by eqns.(3.10) and (3.11); 

cbabca ASfI ˆˆˆ                                        (3.14) 

which transforms in the adjoint representation of 

the SU(3) group. This relation is invariant under 

the global axial rotations (2.16) extended to 

octet fields of equations (3.10) and (3.11) as 

follows: 

, 

where R11 = R22 = cos2                          (3.15) 

and R12 = -R21 = sin2 

Since SU(3) gauge group possesses the 

symmetric structure constant d
abc

 through 

relation (3.3), we can construct three additional 

octet fields 

a

A

a

A

a

s

a

s ASAS ˆ;ˆˆ;ˆ 
                                       (3.16) 

which form a symmetric tensor field of rank two 

with the distinct components given as  

                                       (3.17) 

Under the axial rotation with transformations (3.15), these components transform as  

a

AAAAAA

a

ASASAA

a

SAAAAS

a

SSASAS

a

AA

a

AA

a

AAAASA

a

SAAASS

a

ASASSA

a

SSASSS

a

SA

a

SA

a

AASASA

a

ASSSSA

a

SASASS

a

SSSSSS

a

SS

a

SS

RRRRRRRR

RRRRRRRR

RRRRRRRR







                                    (3.18) 

Where 

RSS = R11 = cos2, RSA = R12 = -RAS = -R21 = sin2 

And RAA = R22 = cos2                                                     (3.18a) 

Substituting these values in equations (3.18), we get  

                                         (3.19) 

 

ˆ ˆ( ) ( )a aS x T x 

5
ˆ ˆ( )( ) ( )a aA x i T x  

1

2

a b ab

rt T T 

'

11 12

'

21 22

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

a a a a

a a a a

S S R S R A

A A R S R A

  

  


ˆ ˆ ;

ˆ ˆ ;

ˆ ˆ ;

a abc b c

ss s s

a abc b c

SA s A

a abc b c

AA A A

d S S

d S S

d S S

 

 

 

' 2 2

'

' 2 2

cos 2 sin 4 sin 2 ;

sin 2 cos 2 cos 4 sin 2 cos 2 ;

sin 2 cos 2 ;

a a a a a

SS SS SS SA AA

a a a a a

SA SA SS SA AA

a a a a

AA AA SS AA

  

    

 

       

         

      
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Thus in the realistic case of three colors, we 

have six independent structures which are 
classified with respect to the global axial 

rotations (3.5), as the scalar I
a
, vectors 𝑆 𝑎  

and𝐴 𝑎 , and rank-2 symmetric tensor with 

components and
a

AA . All these 

structures behave as octet fields with respect to 

SU(3) gauge transformations. From the 
kinematical point of view any of these six octet 

fields can equivalently be used to construct the 

embedded quark monopoles in the SU(3) gauge 

theory
[37]

. Let us use a generic notation 
a  for 

any of these six composite fields or for a linear 

combination of them. It is obvious from eqn. 

(3.9) that Cartan subgroup of the SU(3) gauge 
group is generated by the following two 

diagonal generators. 

𝑇3 =
1

2
 

1   0 0
0 −1 0
0   0 0

 ; 

𝑇8 =
1

2√3
 

1   0 0
0 1 0
0   0 −2

                             (3.20) 

Both these are traceless Hermitian operators and 

we can form a two-component vector T̂  in 

terms of these generators as  

),(ˆ 83 TTT                                           (3.21) 

At any point of the space-time, the octet field  

can be gauge rotated to the Cartan sub- algebra  

)ˆ,(|)(|)( Ttxx


                                 (3.22)  

where(𝑡  , 𝑇 )is the scalar product in Cartan space 

and t


 is the unit two component vector in the 

direction of composite octet  in the Cartan 

space i.e.  

1|| t


                                                      (3.23) 

The magnetic charge of SU(3) quark- monopole 

may be written in the following form in terms of 

dual simple roots 𝜂 1
∗ and𝜂 2

∗ [42-44]
; 

)(
1

2211

  


nn
g

gM

                            (3.24) 

where the dual roots 


1


  and 


2


 are expressed 

in terms of original simple roots 1


 and 2


 of 

SU(3) group as  

2

1

1*

1




 





and
2

2

2*

2
||


 





                      (3.25) 

In the self -dual form the roots 1


  and 2


 may 

be written as  

)0,1(1 


                                                (3.26) 

and 
)

2

3
,

2

1
(2 



Then we have 1|| 1 


and

1|| 2 


 In this case equations (3.25) give 

)0,1(11  


                                       (3.27) 

and 
)

2

3
,

2

1
(22  



 

Then the generalization of Dirac quantization 

condition of the embedded monopole charge to 

the case of SU(3) theory is given by  

1
)ˆ,(4


Tgig Me




  which  gives 

g

n
TgM

2
)ˆ,( 



                                         (3.28) 

where n is an integer. Substituting equations 

(3.21), (3.24) and (3.22) in to this condition, we 

find that n1 and n2 of equation (3.24) must be 

integers. 

SU(3) quark monopole may be classified
[37]

 into 

following two categories according to the 

direction of local Higgs field in the Cartan sub- 

algebra; 

 If the vector t


 in equation (3.22) is not 

orthogonal to any simple root 1


 and 2


 
given by equation (3.26), then the pattern of 

symmetry breaking is maximal i.e.  

)1()1()3( UUSU                              (3.29) 

Then embedded monopoles are described by 

two integer numbers entering in equation (3.24). 

In this case, embedded monopoles 
corresponding to the two U(1) directions may be 

constructed as t’ Hooft-Polyakov type 

monopoles. These monopoles will couple to 
electric gluons in the theory and this mixed 

mode interaction is crucial for confinement and 

chromomagnetic superconductivity. 

 If the asymptotic Higgs field is orthogonal 

either to simple root 1


 or to the simple root 

2


, then the symmetry breaking is minimal 

i.e. 

SU(3)  U(2)                                         (3.30) 

,a a

ss SA 

a
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Then the monopoles are characterized by one 

integer number which is 𝑛1if 

0),( 2 t


                                           (3.31) 

or 𝑛2if ( 𝜂 1, 𝑡  ) =0 

The nature of symmetry breaking pattern (either 

maximal or minimal) corresponds to the type of 

the embedding of the SU(2) t’ Hooft – 

Polyakove monopoles into SU(3) gauge group. 

The choice of either maximal symmetry 

breaking given by equation (3.29) or minimal 

symmetry breaking (3.30) depends on the details 

of Higgs field
[45]

. In the case of QCD we can 

realize both the patterns of symmetry breaking 

simultaneously. 

DISCUSSION 

In equations (2.11) and (2.12), the bilinear 

functions of the fermion fields have been 

constructed to explore the role of quark 

monopoles (i.e., embedded monopoles) in 

restoration of chiral symmetry and the related 

confining properties and superconductivity in 

SU(2) gauge theory. These scalar and axial 

fields transform according to equations (2.16) 

under the axial transformations given by 

equations (2.15). The unit vectors of equations 

(2.17) may be interpreted as the direction of the 

composite Higgs field and consequently, 

equations (2.18) give three Georgi-Glassow 

multiplets in SU (2) gauge theory with Higgs 

field. These multiplets have been used to 

construct gauge invariant t’ Hooft tensors in the 

form given by equation (2.19) in color space. 

These tensors are gauge invariant field strength 

tensors for diagonal components of the gauge 

field with respect to the color direction.  The 

current of the quark monopole ofS
th
 type, given 

by equation (2.23), has a -like singularity at the 

world line
SC . In the similar manner the 

currents of quark monopoles of A
th

 and I
th
 type 

may be constructed and these currents also may 

be shown to have -like singularities on the 

world lines C
A
 and C

I
 respectively.  The quark 

monopoles described by equations (2.23) are 

quantized and the world lines C
S
, C

A
  and C

I
 are 

closed. Thus the quark monopoles of S
th
, A

th
 and 

I
th
 types carry the magnetic charges with respect 

to scalar, axial and chiral invariant components 

of gauge fields given by equations (2.22). In the 

corresponding unitary gauges, defined by 

equations (2.24a), the quark monopoles 

correspond to monopoles embedded into the 

diagonal field components given by equations 

(2.22). In the gauges, where these diagonal 

components are regular, such monopoles are 

hedgehogs
[41]

 in the composite quark-antiquark 

fields. The corresponding quark condensates are 

characterized by the typical hedgehog behavior 

 etc. in the local transverse vicinity of 

monopoles. The existence of these monopoles 

and their condensate in QCD is a kinematical 

consequence of the existence of adjoint real 

valued fields of equations (2.11), (2.12) and 

(2.17). There is an infinite number of equivalent 

formulations of the embedded monopoles (i.e., 

quark monopoles) associated with triplet 

isovectors given by chiral rotation (2.16) of 

isovectors  and Â  with an arbitrary angle 2. 

Because of the hedgehog behavior of embedded 

QCD monopoles in quark – antiquark 

condensates, these monopoles are rightly called 

‘quark monopoles’. These quark monopoles are 

tightly related to the chiral symmetry restoration 

and the resulting color superconductivity in 

RCD. 

In SU(3) gauge theory the bilinear functions of 

fermion field, given by equations (3.10) and 

(3.11), are octet vectors (scalar octet and axial 

octet) and the invariant vector, constructed in 

the form given by equation (3.14), transforms in 

the adjoint representation of the underlying 

symmetry group SU(3). The relation (3.14) is 

invariant under the global axial transformation 

given by equations (3.15). Three additional octet 

fields, given by equation (3.16), form a 

symmetric tensor field of rank two with the 

components given by equations (3.17). These 

components transform as equations (3.18) and 

(3.19) under the axial rotation given by equation 

(3.15). Thus in the realistic case of three colors, 

we have six independent structures which are 

classified with respect to the axial global 

rotations (3.15) as the scalar I
a
, vectors  and 

aÂ and the rank-two symmetric tensor with 

components . All these 

structures behave as octet fields with respect to 

SU(3) gauge transformations. From the 

kinematical point of view any of these six octet 

fields can be used to construct the embedded 

~a a

Sn x

Ŝ

ˆ aS

,a a a

ss SA AAand   
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monopoles in the SU(3) theory. Any of these 

octet fields can be gauge rotated to Cartan sub 

algebra according to equation (3.22) where T̂  is 

a two-component vector defined by equation 

(3.21) in terms of the generators (3.20) of 

Cartan subgroup. 

Equation (3.24) gives the magnetic charge of 

SU (3) embedded monopole in terms of the dual 

simple roots  given by equation (3.25) or 

equation (3.26) in self-dual form. Dirac 

quantization condition (3.28) requires that n1 

and n2 of equation (3.24) for charge of 

embedded monopole must be integers. Maximal 

or minimal natures of symmetry breaking 

pattern, given by relations (3.29) and (3.30) 

respectively, correspond to the type of the 

embedding of SU(2) t’ Hooft – Polyakov 

monopoles into SU(3) gauge group. In the case 

of QCD we can realize both these patterns of 

symmetry breaking simultaneously. 

The density of the embedded monopoles is high 

in the charily invariant phase while it is 

relatively low in the charily broken phase
[37]

 and 

in the cores of these monopoles the chiral 

invariance is broken. Thus the embedded QCD 

monopoles are the agents of the chiral symmetry 

restorations. Thus in real QCD with dynamical 

quarks, the breaking of chiral symmetry must 

explicitly be seen in the densities of the 

embedded monopoles. Due to this role of quark 

monopoles in chiral symmetry restoration and 

also the fact that the chiral symmetry and 

confinement phenomenon are intimately related 

in QCD, the quark monopoles play an important 

role in confining properties including 

superconductivity (rather color 

superconductivity). In QCD the role of Higgs 

condensate is played by chiral condensate, 

which makes the role of embedded QCD 

monopoles meaningful physically 
[46,47]

, 

particularly in connection with color 

superconductivity. 
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